A Novel Synthesis of 5-Functionalized Oxazolidin-2-ones from Enantiotomerically Pure 2-Substituted N-[R-(+) or (-)-\alpha-Methylbenzyl]aziridines

Tae Bo Sim, Se Hun Kang, Kun Su Lee, and Won Koo Lee*

Department of Chemistry, Sogang University, Seoul 121-742, Korea

Hoseop Yun and Yongkwan Dong

Department of Molecular Science and Technology, Ajou University, Suwon 442-749, Korea

Hyun-Joon Ha*

Department of Chemistry, Hankuk University of Foreign Studies, Yongin 449-791, Korea

wonkoo@ccs.sogang.ac.kr; hja@hufs.ac.kr

Received July 12, 2002

5-Functionalized enantiomerically pure oxazolidin-2-ones were prepared in one pot from commercially available chiral aziridines bearing an electron-withdrawing group at C-2 with retention of the configuration in high yields by regioselective aziridine ring-opening followed by intramolecular cyclization.

The importance of functionalized enantiomerically pure oxazolidin-2-ones has been emphasized in organic synthesis. They have been used as not only multipurpose chiral synthons in asymmetric syntheses of biologically active compounds or their synthetic intermediates, but also chiral auxiliaries in many asymmetric transformations. Moreover, some suitably substituted chiral oxazolidinones are also being used as biologically active compounds. Although they have been known for their great variety of applicability, merely a few preparative methods exist for the target compounds from L- and D-serine, N-sulfonlated allylic carbamates, amino alcohols, chiral aziridines, and aliphatic amines. Consequently, the development of a new efficient method for the functionalized chiral oxazolidin-2-ones represents a challenging issue. Especially when the C-5 position is functionalized, chiral oxazolidin-2-ones become significantly useful in organic and medicinal chemistry. For...

instance, Linezolid, having a 5-functionalized chiral oxazolidin-2-one18 as a key structural unit, has become a new important orally active antibiotic.14 As its various biological activities and characteristics have been actively tested so far,12 it is now considered to be even more efficacious than vancomycin used as an antibiotic of last resort. In addition, various isoserine derivatives from chiral oxazolidin-2-ones are highly regarded as protease inhibitors since the hydroxyl group serves as a mimic for the tetrahedral intermediate of proteolysis and is bound tightly to the active site.13 Unfortunately, toxic reagents (e.g., phosgene, diphosgene, triphosgene, isocyanates) have been usually used with the preparative methods of oxazolidinones from the corresponding amino alcohols,3 sometimes even very low or high reaction temperatures were needed.3,14 With those difficulties in mind we developed a novel efficient stereospecific one-pot transformation of 2-functionalized enantioselectively pure aziridines to the corresponding 5-functionalized oxazolidin-2-ones with retention of the configuration at C-2 of the aziridine.

We recently reported the possibilities of the chiral aziridine 1 as a three-carbon chiral building block for the preparation of various biologically active compounds.15 We found that the aziridine nitrogen was quite basic and also nucleophilic; therefore, ring-opening reactions were initiated by the formation of the aziridinium ion intermediate. We therefore envisaged a regioselective aziridine ring-opening initiated by the acylation of the aziridine nitrogen to produce an activated aziridinium species. The reaction of the enantiomerically pure aziridine-2-carboxylic acid ethyl ester 1 with 1.5 equiv of methyl chloroformate in refluxing CH\textsubscript{3}CN proceeded smoothly to provide a 92% yield of the 2-oxazolidinone-5-carboxylic acid ethyl ester 3.16 We monitored the reaction carefully and found that the reaction proceeded via two steps with

SCHEME 1

\begin{align}
1 & \rightarrow ^1 \rightarrow ^2 \\
\text{R}^1 & \text{R}^2 & \text{R}^3 & \text{R}^4 & \text{R}^5 \\
\text{Formation of aziridine-2(\text{S})-chloro-3-[\text{N}-(\text{S})-ethylcarboxylate] 6a} & \text{Men = (+)-Menthol} \\
\end{align}

Reagents and conditions: (a) 1.5 equiv of ClCO\textsubscript{2}CH\textsubscript{3}, CH\textsubscript{3}CN, reflux, 7 h, 92%. (a) 1.5 equiv of ClCO\textsubscript{2}CH\textsubscript{3}, toluene, reflux, 2 h, 97%. (a') CH\textsubscript{3}CN, reflux, 7 h, 95%.

SCHEME 2

1.5 equiv of ClCO\textsubscript{2}Me (1.5 equiv.)

5a

CH\textsubscript{3}CN, reflux

7 h, 93%

6a

Men = (+)-Menthol

the formation of the \(\alpha\)-chlorocarboxylate 3, and we proposed a plausible mechanism in Scheme 1. We isolated the intermediate 3 as an oil and obtained all the characterization data including HRMS to support the proposed structure.

There are two possible pathways to form the oxazolidin-2-one from the C-2-substituted aziridine with retention of the configuration: direct CO\textsubscript{2} insertion between the ring nitrogen and C-2 position of the aziridine17 and a double S\textsubscript{N}2 inversion process at C-2. However, the presence of the intermediate 3 suggests that the reaction is going through an S\textsubscript{N}2-type double inversion process. Therefore, after acylation on the nucleophilic aziridine nitrogen to form the activated aziridinium species 2, the C(2)–N bond is regioselectively cleaved by the chloride ion via an S\textsubscript{N}2 process, and then following intramolecular cyclization by the carbamate oxygen, the oxazolidinone is obtained with the retention of the configuration at C-2 of the aziridine.18 Moreover, while screening a suitable reaction solvent, we found that the reaction did not proceed further at the intermediate stage 3 in toluene. Therefore, we isolated and fully characterized the intermediate 2(R)-chloro-3-[N-methoxycarbonyl-N-(1-R)-pentyllamino]propionic acid methyl ester (3). We also successfully transformed the intermediate 3 to the corresponding oxazolidinone 4 by refluxing in CH\textsubscript{3}CN in 95% yield. The above-mentioned stereospecific one-pot transformation of aziridine-2(R)-carboxylic acid amyl ester 5a equally well proceeded to give the corresponding enantioselectively pure oxazolidin-2-one(5(R)-carboxylic acid menthol ester 6a as a white solid in 93% yield (Scheme 2). To confirm the absolute configuration at C-5 of the oxazolidinone 6a, we obtained the X-ray crystal-

(16) The reaction proceeds equally well with allyl chloroformate, but the reaction rate is dramatically decreased with benzyl chloroformate.
lographic data. We also confirmed the retention of the configuration at C-2 of the aziridine by using 2(S)-stereoisomer 5b to obtain the corresponding 5(S)-oxazolidinone 6b in the same reaction conditions. Therefore, the present transformations show that the absolute configuration at C-5 of the oxazolidinones is controlled by that of the chiral aziridines at the C-2 position (Scheme 3). The above results show that 5-functionalized chiral oxazolidin-2-ones are available very efficiently from chiral aziridines bearing an electron-withdrawing group at the C-2 position with retention of the configuration. To extend the scope of the reaction, we used various C-2-substituted aziridines which have vinyl or acyl groups to provide more 5-functionalized chiral oxazolidin-2-ones in excellent yields (Table 1). 2-Acylaziridines 7 were prepared from the oxidation of the corresponding secondary alcohols obtained by organometallic addition to the aziridine-2-carboxaldehyde 9. Starting from the 2-acyl-substituted aziridines 7, we obtained 5-acyl-substituted chiral 2-oxazolidinones 8 in high yields (Scheme 4). Furthermore, aziridine-2-carboxaldehyde 9 was reacted with an ylide to give the coupling product 10 as a trans isomer in 96% yield. While the reaction of 10 with methyl chloroformate under the previously described conditions afforded oxazolidinone 11 in 94% yield after purification by silica gel flash chromatography, the formation of the 5-vinylaziridin-2-one 13 proceeded without isolation of the 2-vinylaziridine 12 due to the volatility of the compound to give an 85% yield of the vinylaziridinone 13 from the aldehyde 9 (Scheme 5).

In summary, we developed a novel one-pot pathway to 5-functionalized enantiomerically pure oxazolidinones bearing an electron-withdrawing group such as ester, vinyl, or acyl at C-2 with retention of the configuration in high yields.

Experimental Section

General Procedures. Flash chromatography was performed with 230–400 mesh silica gel. Melting points were determined on a capillary melting point apparatus and are uncorrected. H NMR spectra were obtained on 200, 300, and 500 MHz spectrometers. NMR spectra were recorded in parts per million (ppm) relative to the peak for tetramethylsilane (δ = 0.00) as an internal standard unless stated otherwise and are reported as follows: [α]D25 (concentration (g/100 mL), solvent). Solvents and liquid reagents were transferred using hypodermic syringes. All other reagents and solvents used were reagent grade. All glassware was dried in an oven at 150 °C prior to use. Methylene chloride and triethylamine were dried over calcium hydride prior to use. Small- and medium-scale purifications were performed using flash chromatography. Enantiomerically pure N-(R)-α-methylbenzylaziridine-2-carboxylic acid methyl ester (5a) and its 2(S)-stereoisomer (5b) were obtained commercially.

Representative Example of the Formation of Oxazolidin-2-one-5-carboxylates. Preparation of 2-Oxo-3-[1(R)-

(19) The ORTEP drawings and crystal data of 6a and 6b are in the Supporting Information.

(20) Both 2(R)- and 2(S)-aziridinecarboxylic acid menthol esters are available from ChemBioNex.

SCHEME 3

TABLE 1. Preparation of 5-Functionalized Chiral Oxazolidin-2-ones

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>f</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>g</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>h</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>i</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>j</td>
<td></td>
<td>97</td>
</tr>
</tbody>
</table>

(overall yield from 9)

SCHEME 4

phenylethyl]oxazolidine-5(S)-carboxylic Acid Ethyl Ester (4). To a solution of \(\text{phenylethyl]oxazolidine-5(S)-carboxylic Acid Ethyl Ester} \) (1.2 equiv) in 1.65 mL of \(\text{CH}_2\text{Cl}_2 \) under nitrogen at \(-78 \degree \text{C} \), the mixture was stirred for 30 min at \(-78 \degree \text{C} \) and treated with \(\text{EtN} \) (0.53 mmol) in 1.00 mL of \(\text{CH}_2\text{Cl}_2 \). The mixture was sieved for 30 min and warmed to room temperature. To the mixture was added 2.00 mL of water and the organic layer was separated. The aqueous layer was extracted with \(\text{CH}_2\text{Cl}_2 \) (3 mL \(X \)), and the combined organic extracts were dried, filtered, and concentrated in vacuo. Purification by silica gel flash chromatography (EtOAc/hexane, 30:70) provided 183 mg (92%) of \(7f \) as a brown solid: m.p. 161–162 \degree \text{C} [\alpha]_D^20 = -210.8 \degree \text{C} (c 1.0, \text{CHCl}_3); \text{IR} (\text{cm}^{-1}): 132.1, 132.0, 128.7, 127.9, 126.8, 116.1, 115.9, 73.2, 51.4, 43.3, 16.2, 13.9. Anal. Calcld for \(\text{C}_{27}\text{H}_{21}\text{NO}_3 \): C, 86.37; H, 5.64; N, 3.73. Found: C, 86.35; H, 5.62; N, 3.81.

Representative Example of the Preparation of 5-Acyloxazolidin-2-ones. Preparation of 5-(Benzyloxy)phenylethyl]oxazolidin-2-ones (8a). To a solution of \(7a \) (166 mg, 0.66 mmol) in 2.20 mL of \(\text{CH}_2\text{Cl}_2 \) was added methyl chloroformate (80 \muL, 0.99 mmol) and the mixture was stirred for 7 h in refluxing \(\text{CH}_2\text{Cl}_2 \). The mixture was cooled to room temperature and concentrated in vacuo. Purification by silica gel flash chromatography (EtOAc/CHCl\(_3\), 10:90) gave 179 mg (92%) of \(8a \) as a white solid: m.p. 88–89 \degree \text{C} [\alpha]_D^20 = +167.2 \degree \text{C} (c 1.0, \text{CHCl}_3); \text{IR} (\text{cm}^{-1}): 132.1, 128.7, 127.9, 126.8, 116.1, 115.9, 73.2, 51.4, 43.3, 16.2, 13.9. Anal. Calcld for \(\text{C}_{19}\text{H}_{19}\text{NO}_3 \): C, 70.20; H, 5.80; N, 4.47. Found: C, 70.38; H, 5.60; N, 4.51.

Preparation of 2(R)-Chloro-3-(N-methoxy carbonyl-N-(1R)-phenylaminopropionic Acid Ethyl Ester (3). To a solution of 1 (100 mg, 0.46 mmol) in 1.50 mL of \(\text{CH}_2\text{Cl}_2 \) was added methyl chloroformate (50 \muL, 0.68 mmol) and the mixture was stirred for 7 h in refluxing toluene. The mixture was cooled to room temperature and concentrated in vacuo. Purification by silica gel flash chromatography (EtOAc/hexane, 20:80) gave 140 mg (97%) of \(3 \) as a colorless oil: [\alpha]_D^20 = +51.0 \degree \text{C} (c 1.0, \text{CHCl}_3); \text{IR} (\text{cm}^{-1}): 1724, 1712, 1642, 1618, 1540, 1535, 1454, 1380, 1321, 1205, 1076, 1020, 748, 17.6, 13.3. \text{HMR} (\text{EtOH}) \text{mz} \text{calcld for} \text{C}_{19}\text{H}_{17}\text{NO}_2 \text{ClO}_4: 348.11, \text{found} 348.13.

Preparation of 2(R)-Pyren-2-yl Ketone (7f). To a solution of oxalyl chloride (70 \muL, 0.80 mmol) in 1.65 mL of \(\text{CH}_2\text{Cl}_2 \) under nitrogen at \(-78 \degree \text{C} \) was added DMSO (80 \muL, 1.06 mmol). The solution was stirred for 30 min at \(-78 \degree \text{C} \) and treated with a solution of a mixture of \([\text{N}(\text{R})-\text{phenylethyl]aziridin-2(S)-yl\text{]pyren-2-ylmethanol} \text{200 mg, 0.53 mmol}] \text{in} 1.00 \text{mL of \text{CH}_2\text{Cl}_2} \). The mixture was stirred for 30 min at \(-78 \degree \text{C} \) and treated with \(\text{EtN} \) (0.53 mmol) in 1.00 mL of \(\text{CH}_2\text{Cl}_2 \). The mixture was sieved for 30 min and warmed to room temperature. To the mixture was added 2.00 mL of water and the organic layer was separated. The aqueous layer was extracted with \(\text{CH}_2\text{Cl}_2 \) (3 mL \(X \)), and the combined organic extracts were dried, filtered, and concentrated in vacuo. Purification by silica gel flash chromatography (EtOAc/hexane, 30:70) provided 183 mg (92%) of \(7f \) as a brown solid: m.p. 161–162 \degree \text{C} [\alpha]_D^20 = -210.8 \degree \text{C} (c 1.0, \text{CHCl}_3); \text{IR} (\text{cm}^{-1}): 132.1, 132.0, 128.7, 127.9, 126.8, 116.1, 115.9, 73.2, 51.4, 43.3, 16.2, 13.9. Anal. Calcld for \(\text{C}_{27}\text{H}_{21}\text{NO}_3 \): C, 86.37; H, 5.64; N, 3.73. Found: C, 86.35; H, 5.62; N, 3.81.
Synthesis of 5-Functionalized Oxazolidin-2-ones

134.5, 130.8, 130.6, 130.2, 130.2, 128.7, 127.8, 127.4, 126.9, 126.9, 126.8, 126.7, 126.5, 124.7, 124.0, 123.8, 74.3, 51.6, 42.4, 16.4. Anal. Calcd for C_{28}H_{21}NO_3: C, 80.17; H, 5.05; N, 12.69.

Preparation of 3-[1-(1R)-Phenylethylaziridin-2(3H)-yl]acrylic Acid Ethyl Ester (10). To a solution of (EtO) _2POCH_2_CO_2Et (0.14 mL, 0.68 mmol) in THF, the mixture was treated with 0.5 mL of LiHMDS (1.0 M, 0.69 mL, 0.69 mmol) in THF. The mixture was stirred for 30 min and treated with 9 (200 mg, 1.14 mmol) in 2.00 mL of THF via cannula at –78 °C. The mixture was stirred for 2 h at –78 °C, warmed to room temperature, and treated with 1 mL of water. The organic layer was separated, and the aqueous layer was extracted with EtOAc (5 mL × 5). The combined organic extracts were washed with brine, dried over anhydrous MgSO_4, and filtered, and the solvent was evaporated by air flow to obtain the crude mixture 12. To a solution of 12 in 3.80 mL of CH_2_CN was added methyl chloroformate (0.13 mL, 1.71 mmol), and the mixture was stirred for 7 h in refluxing CH_2_CN. The mixture was cooled to room temperature and concentrated in vacuo. Purification by silica gel flash chromatography (EtOAc/n-hexane, 30:70) provided 136 mg (97%) of 13.

Data for 11: [\alpha]^{23D}_D = +108.0 (c 1.0, CHCl_3); 1H NMR (500 MHz, CDCl_3) \delta 7.28–7.19 (m, 5H), 6.67 (dd, J = 15.63 Hz, 1H), 6.01 (dd, J = 15.63, 1.53 Hz, 1H), 5.11 (q, J = 7.08 Hz, 1H), 5.03–4.98 (m, 1H), 4.09 (q, J = 7.14 Hz, 2H), 3.64 (t, J = 8.91 Hz, 1H), 2.82 (dd, J = 8.73, 6.78 Hz, 1H), 1.50 (d, J = 7.14 Hz, 3H), 1.18 (t, J = 7.14 Hz, 3H); 13C NMR (125 MHz, CDCl_3) \delta 165.0, 156.4, 142.0, 138.7, 128.4, 127.7, 126.6, 122.8, 71.2, 60.4, 51.3, 44.7, 16.1, 13.8. Anal. Calcd for C_{15}H_{19}NO_2: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.80; H, 6.76; N, 6.56.

Acknowledgment. We thank the Korea Research Foundation (Grant RIF-2002-070-C00060) for financial support. H.-J. H. acknowledges KOSEF for financial support (Grant R01-2000-00048).

Supporting Information Available: X-ray crystallographic data and ORTEP drawings of compounds 6a and 6b. This material is available free of charge via the Internet at http://pubs.acs.org.

J O0261911